News

In order to mitigate the risks associated with cobalt supply, a safe and affordable LiFePO4-based (LFP) cathode for Li-ion batteries can be a significant solution to meet the rapidly growing battery market. However, economical and environmentally friendly recycling of LFP is impossible with currently available recycling technologies. In this study, an acid-free mechanochemical approach is applied to reclaim Li from LFP using Al as a reducing agent. The reaction mechanism involved in reductive ball-milling followed by water leaching has been elucidated through the examination of various milling times and molar ratios of components, fostering a deeper understanding of the process. Assessing the yield and purity of the final products provides insights into potential enhancements for this technology. Utilizing Al as the material of the current collector eliminates the need for additional external additives, thereby simplifying the recycling workflow. Continued research into this process has the potential to facilitate efficient and economical recycling of LFP materials.

Discover the peer-reviewed publication

The conventional lithium extraction method involves the calcination of a-spodumene at 1050 °C so that it can be converted to the more-reactive b-spodumene and then a sulfuric acid roasting step at 250 °C. Lithium is finally extracted via leaching with water. This method is energy-intensive, leading to high capital and operational costs. In this study, the direct calcination of a-spodumene with the use of sodium carbonate and calcium oxide was examined, aiming to significantly reduce the calcination temperature and completely omit the sulfuric acid roasting step, thereby radically redesigning the lithium extraction process. The calcination product was then leached with different leaching agents, such as water and sulfuric acid, and at different temperatures. The efficiency of the additives was evaluated through the results of lithium extraction achieved during the leaching step. Different leaching agents and temperatures were investigated. The maximum lithium extraction achieved was 96%, obtained after calcination using a sodium carbonate/spodumene mixture and leaching with sulfuric acid at 90 °C. High lithium extractions, up to 83%, can also be achieved under the same calcination conditions and after leaching with sulfuric acid at lower temperatures, such as 40 °C, and for shorter leaching times.

Read the peer-reviewed publication

The poster is available in German and was presented at the German geothermal conference in Essen (October, 2023). Its summary is available in English in the article New membrane-free technique for the selective separation of lithium and sodium.